Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
Journal of Building Performance Simulation ; : 1-29, 2023.
Article Dans Anglais | Web of Science | ID: covidwho-2325421

Résumé

The COVID-19 pandemic has underscored the need for effective ventilation control in public buildings. This study develops and evaluates a smart ventilation control algorithm (SIREN) that dynamically adjusts zone and system-level HVAC operation to maintain an acceptable COVID-19 infection risk and HVAC energy efficiency. SIREN uses real-time building operation data and Trim & Respond control logic to determine zone primary and system outdoor airflow rates. An EnergyPlus and CONTAM co-simulation framework was developed to assess its performance across various control scenarios and US climate zones. Results show that SIREN can flexibly control infection risk within a customized threshold (e.g. 3%) for every zone, while traditional controls cannot. At the building level, SIREN's HVAC energy consumption is comparable to a fixed 70% outdoor airflow fraction scenario, while its infection risk is lower than the 100% outdoor airflow scenario, illustrating its potential for safe and energy-efficient HVAC operation during pandemics.

2.
Build Simul ; : 1-20, 2022 Oct 03.
Article Dans Anglais | MEDLINE | ID: covidwho-2301466

Résumé

This paper presents an EnergyPlus-based parametric analysis to investigate the infection risk of Coronavirus Disease 2019 (COVID-19) under different mechanical ventilation scenarios for a typical medium-sized office building in various climate zones. A Wells-Riley (WR) based Gammaitoni-Nucci (GN) model was employed to quantitatively calculate the airborne infection risk. The selected parameters for the parametric analysis include the climate zone, outdoor air fraction, fraction of infectors, quanta generation rate, and exposure time. The loss and deposition of particles are not considered. The results suggest that the COVID-19 infection risk varies significantly with climate and season under different outdoor air fraction scenarios since the building heating and cooling load fundamentally impacts the supply airflow rate and thus directly influences the amount of mechanical ventilation, which determines the dilution ratio of contaminants. This risk assessment identified the climate zones that benefit the most and the least from increasing the outdoor air fraction. The climate zones such as 1A (Honolulu, HI), 2B (Tucson, AZ), 3A (Atlanta, GA), and 7 (International Falls, MN) are the most energy-efficient locations when it comes to increasing the outdoor air fraction to reduce the COVID-19 infection risk. In contrast, the climate zones such as 6A (Rochester, MN) and 6B (Great Falls, MT) are the least energy-efficient ones. This paper facilitates understanding a widely recommended COVID-19 risk mitigation strategy (i.e., increase the outdoor airflow rate) from the perspective of energy consumption. Electronic Supplementary Material: Supplementary material is available for this article at 10.1007/s12273-022-0937-5 and is accessible for authorized users.

SÉLECTION CITATIONS
Détails de la recherche